
ADVANCED GCE

MATHEMATICS (MEI) 4756
Further Methods for Advanced Mathematics (FP2)

Candidates answer on the Answer Booklet

OCR Supplied Materials:
• 8 page Answer Booklet
• MEI Examination Formulae and Tables (MF2)

Other Materials Required:
• Scientific or graphical calculator

Friday 11 June 2010

Morning

Duration: 1 hour 30 minutes

*
*

4
4

7
7

5
5

6
6

*
*

INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions in Section A and one question from Section B.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.

© OCR 2010 [H/102/2664] OCR is an exempt Charity

3R–9J05 Turn over



2

Section A (54 marks)

Answer all the questions

1 (a) (i) Given that f(t) = arcsin t, write down an expression for f ′(t) and show that

f ′′(t) = t

(1 − t2)3
2

. [3]

(ii) Show that the Maclaurin expansion of the function arcsin(x + 1
2
) begins

π

6
+ 2√

3
x,

and find the term in x2. [5]

(b) Sketch the curve with polar equation r = πa

π + θ
, where a > 0, for 0 ≤ θ < 2π.

Find, in terms of a, the area of the region bounded by the part of the curve for which 0 ≤ θ ≤ π

and the lines θ = 0 and θ = π. [6]

(c) Find the exact value of the integral

ä
3
2

0

1

9 + 4x2
dx. [5]

2 (a) Given that ß = cos θ + j sin θ, express ßn + 1ßn and ßn − 1ßn in simplified trigonometric form.

Hence find the constants A, B, C in the identity

sin5
θ ≡ A sin θ + B sin 3θ + C sin 5θ. [5]

(b) (i) Find the 4th roots of −9j in the form rejθ , where r > 0 and 0 < θ < 2π. Illustrate the roots

on an Argand diagram. [6]

(ii) Let the points representing these roots, taken in order of increasing θ, be P, Q, R, S. The

mid-points of the sides of PQRS represent the 4th roots of a complex number w. Find the

modulus and argument of w. Mark the point representing w on your Argand diagram. [5]
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3 (a) (i) A 3 × 3 matrix M has characteristic equation

2λ
3 + λ

2 − 13λ + 6 = 0.

Show that λ = 2 is an eigenvalue of M. Find the other eigenvalues. [4]

(ii) An eigenvector corresponding to λ = 2 is ( 3−3

1

).

Evaluate M( 3−3

1

) and M2( 1−1
1
3

).

Solve the equation M( x

yß) = ( 3−3

1

). [5]

(iii) Find constants A, B, C such that

M4 = AM2 + BM + CI. [4]

(b) A 2 × 2 matrix N has eigenvalues −1 and 2, with eigenvectors (1

2
) and (−1

1
) respectively.

Find N. [6]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Prove, using exponential functions, that

sinh 2x = 2 sinh x cosh x.

Differentiate this result to obtain a formula for cosh 2x. [4]

(ii) Sketch the curve with equation y = cosh x − 1.

The region bounded by this curve, the x-axis, and the line x = 2 is rotated through 2π radians

about the x-axis. Find, correct to 3 decimal places, the volume generated. (You must show your

working; numerical integration by calculator will receive no credit.) [7]

(iii) Show that the curve with equation

y = cosh 2x + sinh x

has exactly one stationary point.

Determine, in exact logarithmic form, the x-coordinate of the stationary point. [7]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 In parts (i), (ii), (iii) of this question you are required to investigate curves with the equation

xk + yk = 1

for various positive values of k.

(i) Firstly consider cases in which k is a positive even integer.

(A) State the shape of the curve when k = 2.

(B) Sketch, on the same axes, the curves for k = 2 and k = 4.

(C) Describe the shape that the curve tends to as k becomes very large.

(D) State the range of possible values of x and y. [6]

(ii) Now consider cases in which k is a positive odd integer.

(A) Explain why x and y may take any value.

(B) State the shape of the curve when k = 1.

(C) Sketch the curve for k = 3. State the equation of the asymptote of this curve.

(D) Sketch the shape that the curve tends to as k becomes very large. [6]

(iii) Now let k = 1
2
.

Sketch the curve, indicating the range of possible values of x and y. [2]

(iv) Now consider the modified equation |x |k + |y |k = 1.

(A) Sketch the curve for k = 1
2
.

(B) Investigate the shape of the curve for k = 1

n
as the positive integer n becomes very large.

[4]
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 1

 
1 (a)(i)  f (t) = arcsin t   

  f ′(t) = 
2

1

1 t−

= ( )
1
221 t

−

−  B1 Any form 

  f ″(t) = ( )
3
221

2
1 2t t

−

− − × −  M1 Using Chain Rule 

  = 

( )
3
221

t

t−

 
A1 (ag)  

   3  
(ii)  f (x) = arcsin (x + ½)   

  f (0) = arcsin (½) =
6

π
 B1 (ag) 

6

π
 obtained clearly from f (0) www 

  f ′(0) = ( )
1
221

2
1

−
 

− 
 

=
2

3
 

M1 
A1 (ag) 

Clear substitution of x = 0 or t = ½ 
 

 
and f ″(0) = 

( )( )
3
2

1
2

21
21−

=
4 3

9
 

  

  f (x) = f (0) + x f ′(0) + 
2

2

x f ″(0) + … M1 Evaluating f ″(0) and dividing by 2 

  term in x2 is 
2 3

9
x2 A1 Accept 0.385x2 or better 

   5  
(b) 

 

G1 
G1 
 
 
 

Complete spiral with r(2π) < r(0) 
r(0) = a, r(2π) = a/3 indicated 
or r(0) > r(π/2) > r(π) > r(3π/2) > r(2π) 
Dep. on G1 above 
Max. G1 if not fully correct 

 Area = 21
2

0

r d
π

θ    

  = 
( )

2 2

2
0 2

a d
π

π
θ

π θ+
  = 

( )

2 2

2
0

1

2

a d
π

π
θ

π θ+
  M1 Integral expression involving r2 

  = 
2 2

0

1

2

a π
π

π θ

− 
 

+ 
 A1 

Correct result of integration with correct 
limits 

  = 
2 2 1 1

2 2

aπ

π π

− 
+ 

 
 M1 

Substituting limits into an expression of 

the form
k

π θ+
. Dep. on M1 above 

  = 21
4

aπ  A1  

   6  

M1 arctan 
(c) 

3
2

2
0

1

9 4
dx

x+
 = 

3
2

29
40

1 1

4
dx

x+
 = 

3
2

0

1 2 2
arctan

4 3 3

x 
×   

 
A1A1 

1 2

4 3
× and

2

3

x
 

 = 
1

6
arctan 1 M1 Substituting limits. Dep. on M1 above 

 = 
24

π
 A1 Evaluated in terms of π 

   5 19
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 2

2 (a) 
1

2cosn
nz n

z
θ+ = , 

1
2 sinn

nz j n
z

θ− =  B1 Both 

 
5

1z
z

 
− 

 
= 5 3

3 5

10 5 1
5 10z z z

z z z
− + − + −  M1 Expanding 

5
1z
z

 
− 

 
 

  = 5 3
5 3

1 1 1
5 10z z z

zz z
   

− − − + −   
   

   

  32j sin5θ = 2j sin 5θ − 10j sin 3θ + 20j sin θ 
M1 
 
A1 

Introducing sines (and possibly cosines) 
of multiple angles 
RHS 

  sin5θ = 1
16

sin 5θ − 5
16

sin 3θ + 5
8

sin θ A1ft Division by 32(j) 

  A = 5
8

, B = − 5
16

, C = 1
16

   

   5  

(b)(i) 4th roots of −9j =
3
29 je π are jre θ where   

  r = 3  B1 Accept
1
49  

  θ =
3

8

π
 B1  

  θ =
3 2

8 4

kπ π
+  M1 

Implied by at least two correct (ft) 
further values 

  θ =
7

8

π
,
11

8

π
,
15

8

π
 A1 

Or stating k = (0), 1, 2, 3 
Allow arguments in range −π ≤ θ ≤ π 

 
–2 2

–2

2
w

 

M1 
 
 
A1 

Points at vertices of a square centre O 
or 3 correct points (ft) 
or 1 point in each quadrant 
 

   6  

(ii) Mid-point of SP has argument 
8

π
 B1  

 and modulus of 
3

2
 B1  

 Argument of w = 4 ×
8

π
=

2

π
   

 and modulus = 

4
3

2

 
  
 

=
9

4
 

M1 
 
A1 

Multiplying argument by 4 and modulus 
raised to power of 4 
Both correct 

  G1 w plotted on imag. axis above level of P 
   5 16
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 3

3 (a)(i) 2λ3 + λ2 − 13λ + 6 = 0  (λ − 2)(2λ2 + 5λ − 3) = 0 B1 Substituting λ = 2 or factorising 
  λ = 2 or 2λ2 + 5λ − 3 = 0 M1 Obtaining and solving a quadratic 
  (2λ − 1)(λ + 3) = 0   
  λ = ½, λ = −3  A1A1  
   4  

(ii) 
3 3 6

3 2 3 6

1 1 2

     
     

− = − = −     
     
     

M  B1  

 2 2

1
3

1

2 4 1

 
 

= = − 
 
 

M v v =
4
3

4

4

 
 

− 
 
 

 B2 
Give B1 for one component with the 
wrong sign 

 

3 3
2 2
3 3
2 2

1 1
2 2

3

2 3

1

     
     

− = − = −     
         

M  M1 
Recognising that the solution is a 
multiple of the given RHS 

  x = 3
2

, y = 3
2

− , z = 1
2

 A1 Correct multiple 

   5  
(iii)  2λ3 + λ2 − 13λ + 6 = 0   

  2M3 + M2 − 13M + 6I = 0 M1 Using Cayley-Hamilton Theorem 

  M3 = − 1
2

M2 + 13
2

M − 3I   

  M4 = − 1
2

M3 + 13
2

M2 − 3M M1 Multiplying by M 

  M4 = − 1
2

(− 1
2

M2 + 13
2

M − 3I) + 13
2

M2 − 3M M1 Substituting for M3 

  M4 = 27
4

M2 − 25
4

M + 3
2

I A1  

  A = 27
4

, B = − 25
4

, C = 3
2

   

   4  
(b) N = PDP−1 B1 Order must be correct 

 where D =
1 0

0 2

− 
 
 

 B1  

 and P =
1 1

2 1

− 
 
 

 B1 For B1B1, order must be consistent 

  P−1 =
1 11

2 13

 
 

− 
 B1ft Ft their P 

  N =
1 11

2 13

− 
 
 

1 0

0 2

− 
 
 

1 1

2 1

 
 

− 
   

  =
1 21

2 23

− − 
 

− 

1 1

2 1

 
 

− 
 M1 Attempting matrix product 

  =
3 31

6 03

− 
 

− 
=

1 1

2 0

− 
 

− 
 A1  

 OR Let N = 
a c
b d
 
 
 

   

  
1 1

1
2 2

a c
b d
    

= −    
    

  B1  Or 
1 1 0

1 2 0

a c
b d
+    

=    
+    

 

  
1 1

2
1 1

a c
b d

− −    
=    

    
 B1  Or 

2 1 0

2 1 0

a c
b d
− −    

=    
−    

 

  a + 2c = −1, −a + c = −2 B1   
  b + 2d = −2, −b + d = 2 B1   
  a = 1, c = −1; b = −2, d = 0 M1A1  Solving both pairs of equations 
   6 19

 



4756 Mark Scheme June 2010 
 

 4

 
 

4 (i) 2 sinh x cosh x   

 = 2 ×
2

x xe e−
+

×
2

x xe e−
−

   

 = 
2 2

2

x xe e−
−

 M1 
Using exponential definitions and 
multiplying or factorising 

 = sinh 2x A1 (ag)  
 Differentiating,   
 2 cosh 2x = 2 cosh2x + 2 sinh2x B1 One side correct 
  cosh 2x = cosh2x + sinh2x B1 Correct completion 
   4  

(ii) y

 G1 Correct shape and through origin 

 Volume = ( )

2
2

0

cosh 1x dxπ −  M1 ( )
2

cosh 1x dx−  

  =
2

2

0

cosh 2cosh 1x x dxπ − +  A1 
A correct expanded integral expression 
including limits 0, 2 (may be implied by 
later work) 

  =
2

31
2 2

0

cosh 2 2coshx x dxπ − +  M1 
Attempting to obtain an integrable form 
Dep. on M1 above 

  =
231

4 2 0
sinh 2 2sinhx x xπ  − +   A2 Give A1 for two terms correct 

  = 1
4

sinh 4 2sinh 2 3π  − +     

  = 8.070 A1 3 d.p. required. Condone 8.07 
   7  

(iii)  y = cosh 2x + sinh x   

  
dy
dx

= 2 sinh 2x + cosh x B1 Any correct form 

 At S.P. 2 sinh 2x + cosh x = 0   

  4 sinh x cosh x + cosh x = 0 M1 
Setting derivative equal to zero and 
using identity 

  cosh x(4 sinh x + 1) = 0 M1 Solving 
dy
dx

=0 to obtain value of sinh x 

  cosh x = 0 (rejected) A1 Repudiating cosh x = 0 

  sinh x = 1
4

−  A1  

  x = ln
1 17

4 4

 
− +  
 

 
M1 
 
A1 

Using log form of arsinh, or setting up 
and solving quadratic in ex 
A0 if extra “roots” quoted 

   7 18
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 5

5(i)(A) Circle B1  
(B) 

–1

1

 
G1 
G1 

Sketch of circle, centre (0, 0) 
Sketch of “squarer” circle on same axes 

(C) Square B1  
(D) −1 ≤ x ≤ 1 B1 Give B1B0 for not all non-strict or 

 −1 ≤ y ≤ 1 B1 unclear 
   6  

(ii)(A) Odd roots exist for all real numbers B1 Any equivalent explanation 
(B) Line B1 Sketch insufficient 
(C) 

–2 2

–1

1

2 y

 G1  
 Asymptote: x + y = 0 B1  

(D) 

–2 2

–1

1

2 y

 
G1 
G1 

Line x + y = 0 outside unit square 
Lines y = 1 and x = 1 on unit square 

   6  
(iii) 

1  G1 G0 if curve beyond (1, 0) or (0, 1) 
 0 ≤ x, y ≤ 1 B1 Accept strict, or indication on graph 
   2  

(iv)(A) 

–1 1

–1

1

 
G2ft 
 

Give G1 for a partial attempt. Ft from 
(iii) on shape 

(B) Limit is a “plus sign” B1  
 where x → 0 for −1 ≤ y ≤ 1 and vice versa B1  
   4 18
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